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Abstract— In this paper, we introduced the methodology, operator’s and concepts of a Genetic Algorithm. We described a Genetic 
Algorithm based heuristic for solving the flowshop scheduling problems. Flow-shop scheduling problem (FSSP) deals with the scheduling 
of a set of jobs that visit a set of machines in the same order. Heuristics play a major role for solving NP –hard combinatorial optimization 
problems. This paper describes a Genetic Algorithm based heuristic to makespan minimization on flowshop scheduling. We compared our 
heuristic with the NEH (Nawaz, Enscore, Ham) algorithm which is the most popular heuristic in the literature. The computational experience 
shows that the Genetic Algorithm approach provides competitive results for flowshop scheduling problems. 

 

Index Terms—Flowshop scheduling, Crossover operators, Genetic Algorithm , makespan,  Mutation operators, NEH Algorithm. 

——————————      —————————— 

1 INTRODUCTION                                                                     
HE flowshop scheduling has been a very active and prolif-
ic research area since the seminal paper of Johnson [49].      
     The flowshop scheduling problem is a production 

problem where a set of n jobs have to be processed with iden-
tical flow pattern on m machines. When the sequence of job 
processing on all machines is the same we have the permuta-
tion flowshop sequencing production environment. Since 
there is no job passing, the number of possible schedules for n 
jobs is n!.In scheduling problems we must determine the order 
or sequence for processing a set of jobs through several ma-
chines in an optimal manner. We study the flow shop prob-
lems considering the following assumptions:  
(i) The operation processing times on the machines are known, 
fixed and some of them may be zero if some job is not pro-
cessed on a machine. 
(ii) Set-up times are included in the processing times and they 
are independent of the job position in the sequence of jobs. 
(iii) At a time, every job is processed on only one machine, and 
every machine processes only one job. 
(iv)The job operations on the machines may not be preempted. 
Initial research concerning flowshop scheduling problem was 
done by Johnson [49]. Johnson described an exact algorithm to 
minimize makespan for the n-jobs two-machine flowshop 
scheduling problem. Later, algorithms, such as branch-and  
bound and beam search, that yield the exact solution for this  

 

problem were proposed. The flow shop scheduling problem 
that includes many jobs and machines is a combinatorial op-
timization problem for the NP-hard problem category.  
Therefore, near optimum solution techniques are preferred. 
Several heuristic approaches for the flow shop scheduling 
problem are developed. In recent years, metaheuristic ap-
proaches, such as simulated annealing, tabu search, and genet-
ic algorithms, have become very desirable in solving combina-
torial optimization problems because of their computational 
performance. 
     The rest of paper is organized as follows: Section 2 repre-
sents an introduction to GA. Section 3 and 4 describe the 
background, applications, methodology and different opera-
tors of Genetic Algorithms. In section 5 and 6 we explain the 
GA based and NEH heuristics respectively. Section 7 represent 
the model of GA. Computational result show in section 8 and 
finally section 9 represents the conclusion and suggestion for   
future direction. 

1.1 Nomenclature  
 

n                    number of jobs 
m                   number of machines 
pij                   processing time of job i on machine j 
pc                   probability of crossover 
pm                   probability of mutation 
Cmax, C*        makespan, optimal makespan value or lower   
                      bound value 
S(t)                the population in the t-th generation 

2 LITERATURE REVIEW 
A significant research effort has been devoted for sequencing 
jobs in a flowshop with the objective of finding a sequence that 
minimizes the makespan. For problems with 2 machines, or 3 

T 

———————————————— 
• 1Graphic Era University, Dehradun, Uttarakhand, India 

*Corresponding Author: neelam24tyagi@gmail.com 
• 2Department of mathematics, Graphic Era University, Dehradun,           

Uttarakhand, India, E-mail: drrgvarshney@gmail.com 
• 3Department of mathematics, Meerut College, Meerut, Uttar Pradesh, 

India, E-mail: dr.abchandramouli@gmail.com 
 

IJSER

http://www.ijser.org/
mailto:neelam24tyagi@gmail.com
mailto:dr.abchandramouli@gmail.com


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               2448 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

machines under specific constraints on job processing times, 
the efficient Johnson’s algorithm obtains an optimal solution 
for the problem. The famous “Johnson’s rule” is a fast 
O(nlogn) method for obtaining the optimal solution for the 
F2/prmu/Cmax (two machines) and for some special cases with 
three machines. Later, Palmer [11] presented a heuristic to 
solve the more general m -machine PFSP. Campbell, Dudek 
and Smith[21] develop another heuristic which is basically an 
extension of Johnson’s algorithm to the m machine case. The 
list of heuristics is almost endless. Ruiz and Maroto[44] pro-
vided a comprehensive evaluation of heuristic methods and 
concluded that the famous NEH heuristic of Nawaz, Enscore 
and Ham[39] provides the best performance for the 
F/prmu/Cmax problem. As a matter of fact, the NEH is actively 
studied today as the recent papers of Framinan, Leisten and 
Rajendran [27], Dong, Huang and Chen [52], Rad, Ruiz and 
Boroojerdian [47] or Kalczynski and Kamburowski [42] show. 
However, since this scheduling problem is NP-hard (Garey, 
Johnson, & Sethi [40]) the search for an optimal solution is of 
more theoretical than practical importance. Therefore, since 
the 1960s a number of heuristic methods that provide near 
optimal or good solutions with limited computation effort 
have been proposed for flowshop sequencing. The perfor-
mance of some earlier heuristics was evaluated by Dannen-
bring[9]. 

2.1 Heuristic methods can be classified according to 
two major categories 

Constructive methods: The constructive algorithms obtain 
directly a solution for the scheduling problem, i.e. a n-job se-
quence, by using some procedure which assigns to each job a 
priority or an index in order to construct the solution sequence 
(see for example, Campbell, Dudek, & Smith[21], Dannen-
bring[9], Davoud Pour[20],  Gupta[28], Kalczynski & Kambu-
rowski[43], Koulamas[3],  Nagano & Moccellin[41], Nawaz, 
Enscore, & Ham[39], Palmer[11].  
Improvement method:  An improvement method starts from a 
given initial solution, and looks for a better one normally by 
using some neighbourhood search procedure.       
 Metaheuristics can also be considered as improvement 

heuristics. Regarding metaheuristics, there is also a vast 
literature of different proposals for the PFSP under differ-
ent criteria. Metaheuristics can also be considered as im-
provement heuristics. Within this type of techniques we 
find genetic algorithms (GAs), simulated annealing (SA), 
tabu search (TS) and other procedures or hybrid methods. 
The first proposed metaheuristics for the permutation 
flowshop scheduling problem (PFSP) are the simulated 
annealing algorithms by Osman and Potts [23] and Ogbu 
and Smith [16]. Grabowski and Wodecki [24] demonstrat-
ed different tabu search approaches. While Genetic Algo-
rithms are presented in Reeves [6] and in Ruiz, Maroto 
and Alcaraz [46]. Other algorithms are the path-based 
method of Werner [17] or the iterated local search (ILS) of 
Stutzle [51]. 

 Recentaly Other metaheuristics like Ant Colony Optiomi-
zation, a very fast Tabu Search (TS) approach, Scatter 
Search, An updated and comprehensive review of flow-

shop heuristics and metaheuristics, Discrete Differential 
Evolution, Particle Swarm Optimization or Iterated 
Greedy are presented in Rajendran and Ziegler[8], 
Grabowski and Wodecki[24], Nowicki and Smutnicki[13], 
Ruiz and Maroto[44], Onwubolu and Davendra[18], 
Tasgetiren et al.[36] and Ruiz and Stützle[45], respective-
ly. 

  Recent and high performing approaches include parallel 
computing methodologies presented in Vallada and 
Ruiz[14]. Apart from makespan minimization, the PFSP 
has been studied under many other criteria. For example, 
Vallada, Ruiz and Minella [15] review 40 heuristics and 
metaheuristics for tardiness-related criteria. Similarly, a 
recent review of multiobjective approaches is given in 
Minella, Ruiz and Ciavotta [19].  

3 GENETIC ALGORITHMS  
Genetic algorithms were developed by Holland in [25]. The 
genetic algorithm (GA) is a search technique based on the me-
chanics of natural genetics and survival of the fittest (Gold-
berg [10] ). GA simulates the biological processes that allow 
the consecutive generations in a population to adapt to their 
environment. The adaptation process is mainly applied 
through genetic inheritance from parents to children and 
through survival of the fittest. The genetic algorithm object 
determines which individuals should survive, which should 
reproduce, and which should die.  Since genetic algorithms 
(GAs) are adaptive and flexible, the GAs were shown to be 
successfully applied to several optimization problems. For 
example, they have been applied to routing, scheduling, adap-
tive control, game playing, cognitive modeling, transportation 
problem, traveling salesman problems, optimal control prob-
lems, database query optimization, etc. 

The Gas are stochastic search techniques whose search al-
gorithms simulate natural phenomena (biological evolution). 
Genetics is a biological term. Biologically, genes of a good par-
ent produce better offspring The basic idea of the GAs is that 
the strong tend to adapt and survive while the weak tend to 
die. One of the strengths of GAs is that they use past infor-
mation to direct their search with the assumption of improved 
performance. The formal description of the GA which was 
provided by Grefenstette is as follows: 

  … A genetic algorithm is an iterative procedure maintain-
ing a population of structures that are candidate solutions to 
specific domain challenges. During each temporal increment 
(called a generation), the structures in the current population 
are rated for their effectiveness as domain solution, and on the 
basis of these evaluations, a new population of candidate solu-
tions is formed using specific genetic operators such as repro-
duction, crossover, and mutation. (Grefenstette [26] )-               

To successfully apply a GA to solve a problem one needs to 
determine the following (Premalatha et al. [29] ): 

• The representation of possible solutions, or the chro-
mosomal encoding. 

• The fitness function which accurately represents the 
value of the solution. 

• Genetic operators (selection, crossover and Mutation) 
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have to employ and the parameter values (popula-
tion size, probability of applying operators, etc.), that 
are suitable. 

3.1 GA are different from more normal optimization and 
search procedures in four ways 
 GAs work with a coding of the parameter set (as men-

tioned above), not the parameters themselves. 
 GAs search from a population of points, not a single 

point.  
 GAs does not use derivatives or other auxiliary 

knowl-edge.  
 GAs use probabilistic transition rules, not determinis-

tic rules.                
 

It also records statistics and decides how long the evolution 
should continue. Figure 1 illustrates the simple genetic algo-
rithm (Premalatha et al. [29]).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.   Simple genetic algorithm (Premalatha et al., 2009) 
 

3.2 Background of GA 
Many human inventions were inspired by nature. Artificial neural 
networks is one example. Another example is Genetic Algorithms 
(GA). GAs search by simulating evolution, starting from an initial 
set of solutions or hypotheses, and generating successive "genera-
tions" of solutions. This particular branch of AI was inspired by the 
way living things evolved into more successful organisms in na-
ture. 
          The main idea is survival of the fittest, a.k.a. natural selection. 
A chromosome is a long, complicated thread of DNA (deoxyribo-
nucleic acid). Hereditary factors that determine particular traits of 
an individual are strung along the length of these chromosomes, 

like beads on a necklace. Each trait is coded by some combination 
of DNA (there are four bases, A (Adenine), C (Cytosine), T (Thy-
mine) and G (Guanine). Like an alphabet in a language, meaning-
ful combinations of the bases produce specific instructions to the 
cell. Changes occur during reproduction. The chromosomes from 
the parents exchange randomly by a process called crossover.  
          Therefore, the offspring exhibit some traits of the father and 
some traits of the mother. A rarer process called mutation also 
changes some traits. Sometimes an error may occur during copying 
of chromosomes (mitosis). The parent cell may have -A-C-G-C-T- 
but an accident may occur and changes the new cell to -A-C-T-C-T-
. Much like a typist copying a book, sometimes a few mistakes are 
made. Usually this results in a nonsensical word and the cell does 
not survive. But over millions of years, sometimes the accidental 
mistake produces a more beautiful phrase for the book, thus pro-
ducing a better species. 

3.3 Methodology 
The general procedures of the GA are as follows: 

1. Initialize a population of binary or non-binary chro-
mosomes. 

2. Evaluate each chromosome in the population using 
the fitness function. 

3. Select chromosome to mate (reproduction). 
4. Apply genetic operators (crossover and mutation) on 

chromosome selected. 
5. Put chromosomes produced in a temporary popula-

tion. 
6. If the temporary population is full, then go to step 7. 

Otherwise , go to step 3. 
7. Replace the current population with the temporary 

population. 
8. If termination criterion is satisfied, then quit with the 

best chromosome as the solution for the problem. 
Otherwise , go to step 2 

3.4 Simple Genetic Algorithm 
 

/*Algorithm GA */ 
 

Formulate initial population 
Randomly initialize population 

Repeat 
 

Evaluate objective function 
Find fitness function 

Apply genetic operators 
 

Reproduction 
Crossover 
Mutation 

 
Until stopping criteria 

 
Fig. 2. The Working Principle of a Simple Genetic Algorithm 

3.5 Genetic Algorithms are composed of three 
operators 

                     1.     Reproduction,  

Solution 
 

Problem 
Problem Encoding 
Objective Function 

Evolutionary operators 

Mutation 

Cross Over 

Selection 

Fitness Assignment 
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                2.     Crossover,  
                3.     Mutation 

 
 

Reproduction is a process in which individual strings are cop-
ied according to their objective function values (biologists call 
this function the fitness function). We can think of the fitness 
function as some measure of profit, utility or goodness that we 
want to maximize. This operator, of course, is an artificial ver-
sion of natural selection.  
Crossover is the partial exchange of information using a cross-
site chosen at random. First strings in the mating pool are 
mated at random then new strings are created by swapping 
the selected elements of the string (Figure 3).  
Mutation is the occasional (with small probability) random 
alteration of the value of a string position. In the traditional 
representation of GA this means changing a 1-a 0 and vice 
versa. By itself, mutation is a random walk through the string 
space. The mutation operator plays a secondary role on the 
GA. 
 

                 Before Crossover         After crossover 
 
1   String     
 
 
2   String 
 

Fig. 3. Crossover 
 

Application of Genetic Algorithms 
The application of genetic algorithms to the flow shop scheduling 
problem has been widely studied.  
 Chen et al. [4] developed one of the earliest genetic algorithms 

for the flow shop scheduling problem with the makespan min-
imization criterion.  

 Reeves [6] also described the concept of genetic algorithms 
and applied it solving the flow shop scheduling problem with 
makespan as a criterion.  

 Murata et al. [50] examined the performance of genetic algo-
rithms in order to specify some genetic operators and parame-
ters for the flow shop scheduling problem. They then proposed 
two hybrid genetic algorithms to improve the performance of 
the genetic algorithm. One is the genetic local search algorithm 
and the other is a genetic simulated annealing algorithm. They 
also introduced some modifications of search mechanisms in 
these hybrid genetic algorithms.  

 Cotta and Troya [2] studied different representations for the 
flow shop scheduling problem using forma analysis. They pro-
posed some new operators that run on these representations.  

 Reeves and Yamada [5] re-considered the implementation of a 
genetic algorithm for the flow shop scheduling problem using 
the representative neighborhood and path re-linking.  

 Wang et al. [31] presented a class of order-based genetic algo-
rithms for the flow shop scheduling problem. This algorithm 
borrows from the idea of ordinal optimization to ensure the 
quality of the solution found with a reduced computation ef-
fort. It is applied to evolutionary search mechanisms and learn-
ing capabilities of genetic algorithms to effectively perform 
exploration and exploitation.  

 Wang and Zheng [31] proposed an effective hybrid heuristic 
for the flow shop scheduling problem. They incorporated the 
NEH heuristic into the random initialization of a genetic algo-
rithm, used multicrossover operators acting on the divided 
subpopulations, and replaced mutation by the simulated an-
nealing metropolis sample process with multiple neighbor state 
generators.  

 Iyer and Saxena [48] improved the standard implementation of 
the genetic algorithm by tailoring the various genetic algorithm 
operators to suit the structure of the problem. 

  Wang et al. [34] first formulated the determination of optimal 
genetic control parameters. Then the ordinal optimization and 
the optimal computing budget allocation techniques are applied 
to determine the best genetic control parameters among all the 
alternative parameter combinations.  

 Ruiz et al. [46] proposed a robust genetic algorithm and a rapid 
hybrid implementation for solving the permutation flow shop 
scheduling problem. These algorithms use new genetic opera-
tors, advanced techniques like hybridization with local search, 
an efficient population initialization, and a new generational 
scheme.  

 Wang and Zhang [32] presented a novel and systematic ap-
proach based on ordinal optimization and optimal computing 
budget allocation techniques to determine the optimal combi-
nations of genetic operators for flow shop scheduling prob-
lems. 

  Zhang et al. [35] proposed an adaptive genetic algorithm with 
multiple operators for the flow shop scheduling problem. This 
adaptive genetic algorithm uses multiple crossover and muta-
tion operators in an adaptively hybrid sense, according to their 
contribution to the search process.  

4 GENETIC ALGORITHM FOR FLOWSHOP SCHEDULING 
PROBLEMS 

Flowshop scheduling is one of the most well-known problems in the 
area of scheduling. Various approaches to this problem have been 
proposed since the pioneering work of Johnson [49]. GAs has been 
applied to combinatorial optimization problems such as the traveling 
salesman problem and scheduling problems (see for example, Fox & 
McMahon [1], Ishibuchi, Yamamoto, Murata, & Tanaka [22]. When 
applying GAs to a scheduling problem there is an obvious practical 
difficulty. We need a different string representation and genetic oper-
ators. These are shown below in detail 
 Representation of structure : The traditional representation of 

GA which contains 0's and l's does not work for scheduling 
problems. In order to apply any GA to a scheduling problem, a 
structure can be described as a sequence of the jobs in the prob-
lem.  

  
Elements of Genetic Algorithms 

4.1 Population initialization and population size 
The first element of the GAs is the size of population and how 
to generate the initial population. The initial population of 
chromosomes can be generated randomly or by using some 
heuristics that are suitable for the problem considered. The 
determination of the population size is a crucial element in the 
GAs. Selecting a very small population size increases the risk 
of prematurely converging to a local optimal. Large popula-
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tion sizes increases the probability of converging to a global 
optimal, but it will take more time to converge. In most of the 
GA applications, the population size was maintained at a con-
stant. Most GAs in other contexts assumes that the initial pop-
ulation is chosen completely at random. But it is a good idea to 
construct the initial population drawing on other heuristics in 
the literature. This enables us to arrive at the final solution 
more quickly. Reeves' used the NEH Algorithm to generate 
the initial population. He obtained one solution from this heu-
ristic and generated others at random. Chen et al, used the 
CDS algorithm (a heuristic developed by Campbell, Dudek 
and Smith) to construct the initial population. Chen et al also 
stated that the initial population for their GA would be gener-
ated using other well known heuristics (for example, Dannen-
bring's method or a job insertion-based method). We use the 
m-1 schedules produced by the CDS method and one schedule 
produced by using the Dannenbring method to generate an 
initial population. This operator selects a member at random 
and swaps two randomly selected positions of the member to 
generate a new member for the initial population. This proce-
dure will be repeated until the number of the members is 
equal to population size. Chen et al, generated some trial ex-
amples and run their heuristics with different population sizes 
for each example; They found that the population with size 
more than 60 cannot guarantee better results than the popula-
tion with size equal to 60. Therefore, we decided to use 60 as a 
population size of our heuristic. 

4.2 Fitness function 
The second element of the GAs is the fitness function, which is 
very important of the GAs process of evolution. The GA with-
out fitness function is blind because the GA directs its search 
using historical data which are the fitness values of the chro-
mosomes. The GA will use the fitness values of each chromo-
some to determine if the chromosome can survive and pro-
duce offspring, or die. 
There are different criteria used as fitness values of a structure. 
The most popular of these are makespan (maximum comple-
tion time) and total flow time. We use the makespan criterion 
in our heuristic. For a maximization problem, the measure of 
performance generally constitutes the fitness function. How-
ever, our objective is to minimize the makespan. For minimi-
zation problems, the method to determine the fitness function 
differs from the maximization problems. Fitness function of 
the strings can be calculated as follows:  
 
   f(Si(t))= max{C(Si(t)} - C(Sit)                                                   
(1.1)  
    where Si(t) is the ith string in tth generation, C(Si(t)) is the 
makespan of Si(t) and f(S i(t)) is the fitness function of Si(t). 
Therefore, the probability of selection for a schedule P(Si(t)) 
with lower makespan is high (Equation 1.2).  
 
        P(Si(t)) = f(Si(t))  / Σf                                               (1.2)  
                     This is also the criterion used for the selection of 
parents for the reproduction of children. 
Genetic Algorithm Operators 
 

4.3 Reproduction (or Selection) of chromosomes 
The selection of chromosomes to reproduce is the third ele-
ment of the GA. Reproduction (or selection) is an operator that 
makes more copies of better strings in a new population. Re-
production is usually the first operator applied on a popula-
tion. Reproduction selects good strings in a population and 
forms a mating pool. This is one of the reasons for the repro-
duction operation to be sometimes known as the selection op-
erator. Thus, in reproduction operation the process of natural 
selection causes those individuals that encode successful struc-
tures to produce copies more frequently. To sustain the gener-
ation of a new population, the reproduction of the individuals 
in the current population is necessary. For better individuals, 
these should be from the fittest individuals of the previous 
population. This is very important element in the GA because 
it plays an important role in the convergence of the GA. If the 
selection process is always biased to only accept the best 
chromosome, the algorithm will quickly have a population of 
almost the same chromosome which will cause the GA to con-
verge to a local optimum. Several selection methods have been 
employed by several researchers to select among the best per-
formers. Some of these methods are: the proportional selection 
scheme; the roulette wheel selection; deterministic selection; 
ranking selection; tournament selection, etc.   

• Roulette wheel selection 
Roulette wheel selection is chosen, where the average fitness 
of each chromosome is calculated depending on the total fit-
ness of the whole population. The chromosomes are randomly 
selected proportional to their average fitness.  
Roulette wheel selection is summarized in the following steps, 
 Step1. Let the pop-size, number of strings in pop. 
 Step2. nsum, sum of all of the fitness values of the strings 

in pop; form nsum slots and assign string to the slots ac-
cording to the fitness value of the string. 

 Step3. Do step 4 (pop-size -1) times.  
 Step4. Generate a random number between 1 and nsum, 

and use it to index into the slots to find 
 Step5. Add the string with the highest fitness value in pop 

to newpop. the corresponding string; add this string to 
newpop 

 
• Tournament selection [10]. 

In Tournament Selection, predetermined numbers of chromo-
somes are randomly selected from the population and the 
chromosome with the best fitness value is considered to be 
regenerated. Here selection is based on a competition within a 
subset of the population. 

4.4 Crossover 
Crossover is used as  the main genetic operator  and  the per-
formance of a GA  is heavily dependent  on  it. It’s a fourth 
element of GA. A crossover operator is used to recombine two 
strings to get a better string.It is important to note that no new 
strings are formed in the reproduction phase. In the crossover 
operator, new strings are created by exchanging information 
among strings of the mating pool. A crossover operator is 
mainly responsible for the search of new strings even though 
mutation operator is also used for this purpose sparingly.  
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Assume that in the initial population there are two parents 
which are: 
    
   Parent 1:      6-7-5-4-2-3-1-8         and        
   Parent 2:      8-4-3-1-7-5-2-6 
 
A single- position crossover method is performed on the two 
parents, where the single- position crossover is denoted by 
“|” as shown below. 
 
    Parent 1:       6-7-5-4-2-|3-1-8         and          
    Parent 2:       8-4-3-1-7-|5-2-6 

     Child 1:       6-7-5-4-2-5-2-6           and          
     Child 2:       8-4-3-1-7-3-1-8 
 
It is obvious that both of children represent infeasible se-
quences because both of them have five jobs out of eight jobs, 
and each has three duplicated jobs. Therefore to solve this in-
feasibility problem, several crossover methods that produced 
feasible chromosomes were proposed by several researchers: 
 

1. Order crossover (OX) by Davis [30]. 
2. Partially Mapped Crossover (PMX) by Goldberg and 

Lingle. 
3. Sub-sequence-Swap crossover (SSX) and Sub-

sequence-Chunk crossover (SCX) by Grefenstette et 
al. [26]. 

4. Cycle Crossover (CX) by Oliver, Smith, and Holland. 
5. Edge Recombination Crossover (ERX) by Whitley, 

Starkweather, and Shaner [12]. 
6. Linear Order Crossover (LOX) by Falkenauer and 

Bouffouix. 
7. Order-based Crossover (OBX) and Position-based 

Crossover (PBX) by Syswerda. 
8. Enhanced edge recombination Crossover (EERX) by 

Starkweather et al. 
9. Similar Job Order Crossover (SJOX) by Ruben Ruiz et 

al. [44]. 
Some of these crossover operators are briefly  explained in the 
following:  
 

4.4.1. Linear order crossover (LOX)  
 
LOX, initially suggested by Falkenauer and Bouffouix, works 
as follows: 
Step 1:   Select a subsequence of operations from one parent at 
random. 
Step 2:   Produce a proto-offspring by copying the subsection 
sequence into the corresponding positions of it. 
Step 3:   Delete the operations which are already in the subse-
quence from the second parent.The resulted sequence of oper-
ations contains the operations that the proto-offspring needs 
Step 4:  Place the operations into the unfixed positions of the 
proto-offspring from left to right according to the order of the 
sequence to produce an offspring. This procedure is illustrated 
in figure 4.  

     Crossover LOX tries to preserve as much as possible both 
the relative positions between genes and the absolute posi-
tions relative to the extremities of parents 

 

 

 

 

 

 
 
 

              Fig. 4. LOX Crossover operator. 

4.4.2. Position Based Crossover (PBX) 
Step 1:   Select a set of positions from one string at random, 
Step 2: Produce a new string by copying the symbols on these 
positions into the corresponding positions in the new string, 
Step 3: Delete the symbols already selected from the second 
string. The resulting sequence contains only the symbols that 
the new string needs, 
Step 4:   Place the symbols into unfixed positions in the new 
string from left to right according to the order of the sequence 
used to produce one offspring. First,  it  is  generated  a ran-
dom  mask  and  then  exchanged  relative  genes  between  
parents according  to  the mask.   

4.4.3 Order crossover (OX). 
The offspring inherits the elements between the two crossover 
points from the selected parent in the same order and position 
as they appear in the parent. The remaining elements are in-
herited from the alternate parent in the order in which they 
appear in that parent, beginning with the first position follow-
ing the second crossover point and skipping over all elements 
already present in the off spring. 

4.4.4. Partially Mapped Crossover (PMX) 
A parent and two crossover sites are selected randomly and 
the elements between two string positions in one of the par-
ents are directly inherited by the offspring. Each element be-
tween the two crossovers points in the alternate parent are 
mapped to the position held by this element in the first parent. 
Then the remaining elements are inherited from the alternate 
parent. 
Step 1: Two points are randomly selected for dividing the par-
ents. The section of the parents between these two points is 
called the mapping section (figure 5). 
Step 2:    Exchanges the mapping section of the parent to the 

Parent 1 
 

4      5       1        6       7        2       3 

2     5         1       6       7        4       3 

4      7       1        6       5        2       3 

Child 1 
 
 
Parent 2 
 

Child 2 
 
 

2      7       1        6       5         4       3 

Parent 1 
 

2     5         1       6       7        4       3 

Parent 2 
 

4      7       1        6       5        2       3 
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offspring. i.e. mapping section of  the first parent is copied into 
the second offspring and so on. 
 

 
 
                                 3 1        4 6              5 5 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                        3 1           4 6              5 5 
 
 

 
Fig. 5. Partially mapped crossover 

 
Step 3:   Define one-to-one mapping between genes of map-
ping section of the two parents. For  the above example map-
ping is as follows (figure 6). 
 
 
           

Fig. 6. One-to-one mapping. 

4.4.5 Cycle Crossover (CX) 
The cycle between strings is fined, the symbols in the cycle are 
coped to a new string, the remaining symbols are determined 
for the new string by deleting the symbols and the remaining 
symbols are fulfilled with the new string. 

4.4.6 Order-based Crossover (OBX) 
A set of positions is selected randomly; the order of symbols in 
the selected positions is imposed on the corresponding sym-
bols in the other string. Mutation operator plays a very im-
portant role in  GAs  and  it  helps  maintain  diversity  in  the  
population  to  prevent  premature  convergence.   
     Six  mutation  operators  are  examined  in  the  GA  to  
minimize  the  makespan  in  HFS.  These  are  neighborhood  
based,  adjacent  two  job  change,  arbitrary two job change, 
arbitrary three job change,  shift change and inversion muta-
tion operator. 

4.4.7 Similar job order crossover (SJOX) 
SJOX crossover is based on the idea of identifying and main-
taining building blocks in the offspring (Ruben Ruiz et al. 
[44]). In this way similar blocks or occurrences of jobs in both 
parents are passed over to child unaltered. If there are no simi-

lar blocks in the parents the crossover operator will behave 
like the single-point order crossover. 

4.5 Mutation 
Mutation is nearly always regarded as an integral part of a 
GA. Mutation generates an offspring solution by randomly 
modifying the parent’s feature. It helps to preserve a reasona-
ble level of population diversity, and provides a mechanism to 
escape from local optima. For each child obtained from cross-
over, the mutation operator is applied independently with a 
probability pm.   
     Mutation adds new information in a random way to the 
genetic search process and ultimately helps to avoid getting 
trapped at local optima. It is an operator that introduces diver-
sity in the population whenever the population tends to be-
come homogeneous due to repeated use of reproduction and 
crossover operators. Mutation may cause the chromosomes of 
individuals to be different from those of their parent individu-
als. Mutation in a way is the process of randomly disturbing 
genetic information. They operate at the bit level; when the 
bits are being copied from the current string to the new string, 
there is probability that each bit may become mutated. This 
probability is usually a quite small value, called as mutation 
probability pm.  
      A coin toss mechanism is employed; if random number 
between zero and one is less than the mutation probability, 
then the bit is inverted, so that zero becomes one and one be-
comes zero. This helps in introducing a bit of diversity to the 
population by scattering the occasional points. This random 
scattering would result in a better optima, or even modify a 
part of genetic code that will be beneficial in later operations. 
On the other hand, it might produce a weak individual that 
will never be selected for further operations.  
     The need for mutation is to create a point in the neighbor-
hood of the current point, thereby achieving a local search 
around the current solution.  
     The mutation is also used to maintain diversity in the popu-
lation. For example, the following population having four 
eight bit strings may be considered: 
 

0 1 1 0 1 0 1 1 
0 0 1 1 1 1 0 1 
0 0 0 1 0 1 1 0 
0 1 1 1 1 1 0 0 

 
It can be noticed that all four strings have a 0 in the left most 
bit position. If the true optimum solution requires 1 in that 
position, then neither reproduction nor crossover operator 
described above will be able to create 1 in that position. The 
inclusion of mutation introduces probability pm of turning 0 
into 1. 
     In traditional GAs, mutation is applied by flipping each 
element of the structure from 1 to 0 (or vice versa) with a small 
probability. In sequence representation mutation needs to be 
defined differently. Mutation operator plays a very important 
role in  GAs  and  it  helps  maintain  diversity  in  the  popula-
tion  to  prevent  premature  convergence.  Some  mutation  
operators  are  examined  in  the  GA  to  minimize  the  

Child 1 
 
 

3      2       1        6       5         4       7 

Parent 1 
 

1     2          3       4       5        6       7 

Parent 2 
 

4      7       1        6       5        2       3 

6      7       3        4       5         2       1 Child 1 
 
 

Parent 1 
 

1     2          3       4       5        6       7 

Parent 2 
 

4      7       1        6       5        2       3 
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makespan  in Flowshop Scheduling.  These  are  neighborhood  
based,  adjacent  two  job  change,  arbitrary two job change, 
arbitrary three job change,  shift change and inversion muta-
tion operator etc. 
 
 

4.5.1 Exchange mutation 
Exchange mutation was a simple exchange of two elements of   
the structure, chosen at random.  

• Before mutation :     4  6  2  8  5  1  3  7 
• After mutation    :    4  3  2  8  5  1  6  7 

4.5.2 Inversion Mutation 
It can be seen from Fig. 7 that the inversion mutation selects 
two positions at random and then swaps the genes on these 
positions. 
 

 
 
 

 
 

                  Fig. 7. The Inversion mutation operators 

4.5.3 Shift mutation 
Sift mutation was a shift of one element (chosen randomly) a 
random number of places to the right or left.  

Before mutation:      4  6  2  8  5  1  3  7 
After mutation   :     4  3  6  2  8  5  1  7 

Some experiments shows that shift mutation seemed to be better than 
exchange mutation (see Holland'). 

4.6 Generations (iteration) 
Now that there is no practicable rule to set suitable stopping 
condition and it is also impossible for GA to evolve with too 
long time in real application, the usual way is to set a limit to a 
number of generations. These three operators are simple and 
straightforward. The reproduction operator selects good 
strings and the crossover operator recombines good sub-
strings from good strings together, hopefully, to create a better 
sub-string. The mutation operator alters a string locally ex-
pecting a better string. Even though none of these claims are 
guaranteed and/or tested while creating a string, it is ex-
pected that if bad strings are created they will be eliminated 
by the reproduction operator in the next generation and if 
good strings are created, they will be increasingly emphasized. 
Further insight into these operators, different ways of imple-
mentations and some mathematical foundations of genetic 
algorithms can be obtained from GA literature. Application of 
these operators on the current population creates a new popu-
lation. This new population is used to generate subsequent 
populations and so on, yielding solutions that are closer to the 
optimum solution. The values of the objective function of the 
individuals of the new population are again determined by 
decoding the strings. These values express the fitness of the 
solutions of the new generations. This completes one cycle of 
genetic algorithm called a generation. In each generation if the 

solution is improved, it is stored as the best solution. This is 
repeated till convergence. 
We use the number of generations (iteration) as the termina-
tion criterion. If the number of generations is low the probabil-
ity of finding the best result is low. Otherwise if the number of 
generations is too high, the iteration time is too long. Figure 8 
shows the experiments for improvement of the makespan ac-
cording to the generations. We conducted some experiments 
by solving different sizes of problem at 35 generations and we 
found out that the makespan become stable after 20 genera-
tions. An empirical number of generations is 35. If the size of 
problems is larger than 30 x 30 and processing time interval is 
larger than 1-20, the number of generations may be increased. 
Therefore, we chose 20 as the termination criterion in our heu-
ristic. 

5 GENETIC ALGORITHM BASED HEURISTIC 
Now, we are describes GA-based heuristic for the flowshop 
problems.  
Step 1: Determine the initial population S(0) as described in an 
earlier section. The size of the    population is 60.  t = 0,   NG=0 
Step 2: Calculate the fitness value, f(Si(t)), of each string for 
population. (See Equation (1.1))  
Step 3: Calculate the selection probability, P(Si(t)),of each 
string for population.(See Equation 1.2) 
Step 4: Select a pair of strings (parents) according to selection 
probabilities of the members of S(t) (using random numbers).  
Step 5: Constitute the new strings (children) by applying the 
LOX operator to the parents. 
Step 6: Apply the shift mutation to the children with probabil-
ity 0.05 (Pm = 0.05).  
Step 7: Put the new strings in S(t+l). If the size of population 
S(t + 1) = 60  then NG = NG + 1 and go to Step 8, else go to 
Step 4.  
Step 8: If NG = 20 then stop, else go to Step 2. 

6 NEH HEURISTIC  
The NEH heuristic was proposed by Nawaz et al [39] to solve 
the m-machine flow shop problem of minimizing makespan. 
The heuristic is based on the assumption that a job with more 
processing time on all machines will be given higher priority 
while a job with less processing time on all machines will re-
ceive lower priority. Accordingly, the two jobs with highest 
processing times are determined from the n-jobs problem. The 
best partial sequence for these two jobs is found by consider-
ing the two possible partial schedules. The relative positions of 
these two jobs with respect to each other are fixed in the re-
maining steps of the heuristic. Next, the job with the third 
highest processing time is determined and three partial se-
quences are tested in which this job is placed at the beginning, 
middle, and end of the partial sequence found before. The best 
partial sequence fixes the relative positions of these three jobs 
in the remaining steps of the heuristic. This procedure is re-
peated until all jobs are fixed and scheduled. 

1 2 3 4 5 6 

1 5 3 4 2 6 
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7 A MODEL REPRESENTATION OF GENETIC ALGORITHMS 
A set of genetic operators such as reproduction (selection) and 
recombination (crossover and mutation) is applied to create 
new and better solutions (off springs) from the individuals of 
the current population and the solutions are steadily im-
proved from generation to generation. The structure of GAs is 
given in Fig. 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 COMPUTATIONAL RESULTS 
In order to examine the effectiveness of the GA-based heuris-
tic, one comparison was made over a wide range of jobs and 
machines. We compared our heuristic with the NEH (Nawaz, 
Enscore, Ham) Algorithm which is the most popular heuristic 
in the literature. NEH is a 20-year-old heuristic but most re-
searchers still compare their heuristic with NEH or they in-

clude NEH in their algorithms. Armentano et al, showed the 
improvement percentage of tabu search with diversification 
and intensification compared to NEH algorithm. Koulamas [3] 
proposed a new heuristic called HFC (Heuristic Flowshop 
scheduling with Cmax objective) and compared HFC with NEH 
algorithm. Ronconi26 also compared his MM (MinMax) algo-
rithm with NEH. Framinan et al, showed the excellent perfor-
mance of the NEH in their algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     They proposed a heuristic for mean/total flowtime minimi-
zation in permutation flow shops. The heuristic exploits the 
idea of 'optimizing' partial schedules, already present in the 
NEH heuristic with respect to makespan minimization. 

        TABLE 1:  RELATIVE PERFORMANCE OF GA 
(CGA/CNEH) 

Encoding 

Solution 
 

1   1   0   0   1   0   1  0   1  0  
1   0   1   1   1   0   1  1   1  0 
0   0    1    1   0    1    1   0   0  0    
1   1    0    0   1    1    0   0   0   1 

Initial Population 
 

Evalution 
Offspring 

 

1   1   0   0   1   0   1   0   1  0  
1   0   1   1   1   0   1   1   1  0 
0   0   1   1   0   1   1   0   0  0    
1   1   0   0   1   1   0   0   0  1         

                         Decoding 
 
   
 
 
         Fitness Computation            

Solution 
 

Mutation 
 

 

Strings 
Crossover 
 

1    1   0   0   1   0   1   0   1   0 
 
1    1   0   0   1   0   1   0   1   0 
 

1    1   0   0   1   0   1    1   1   0    
 
1    0   1   1   1   0   1    0   1   0    

1    1   0   0   1   0   1   0   1   0 
 

1    1   0   0   1   0   1    1   1   0    
 

Selection 

Roulette 
Wheel   
 
   

 

Fig. 8. The fundamental cycle and operations of basic GAs (Gen and Cheng [37]) 
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The processing times were randomly sampled from a uniform 
distribution ranging from 1-20. Using this range enables us to 
compare our genetic algorithm with the Chen et a119h heuris-
tic that uses the same range of processing times. Both heuris-
tics were programmed in PASCAL and run on a Pentium IV 
(256 MB RAM) computer. In all, 230 problems were generated 
for 23 different combinations of job size and number of ma-
chines. It was not possible to solve problems larger than 40 x 
40 because of software and machine limitations. This is caused 
by the build up computer memory requirements from the siz-
able GA population and the operations being carried out on it. 
The result of the two comparisons are presented in the follow-
ing tables. In Table 1 the relative performance of the GA-based 
heuristic to the NEH was computed by CGA/CNEH where 
the C refers to the average makespan of the problems in the 
combination. Problems, used for calculation are the same as in 
Table 2 (200 runs were performed).  

 
TABLE 2:  COMPARISON OF GA WITH THE NEH 

 
In Table 2, the first column is the pairing of the number of 
jobs, n, and the number of machines, m. The second column is 
the number of generated problems for the pairing. The third 
column and fifth column illustrate the number of times the 
best solution was obtained by the heuristic used, respectively. 
The fourth column shows the number of times that two heu-
ristics in a comparison give the same makespan. The last two 
columns show the percentage of success of each heuristic, the 

total number of times that the heuristic gives the best solution 
(number of advantage + number of even) divided by the 
number of generated problems. (The method of Widmer and 
Hertz.) According to the results in Table 1 the GA-based heu-
ristic obviously yields better average makespan than the NEH.       
     Table 2 shows that in the 230 generated examples, the NEH 
gets better results than the GA-based heuristic only 56 times 
out of 230, while the GA-based heuristic is better 139 times out 
of 230. The NEH and the GA-based heuristic give the same 
results 35 times out of 230. 

9 CONCLUSION AND DIRECTIONS FOR FUTURRE SEARCH 
In this paper, we introduced the fundamental modal and de-
scribed a GA-based heuristic for solving the flow shop sched-
uling problems. The algorithm is easily implementable and 
performs quite effectively. Genetic Algorithms are easy to ap-
ply to a wide range of problems, from optimization problems 
like the traveling salesperson problem, to inductive concept 
learning, scheduling, and layout problems. The results can be 
very good on some problems, and rather poor on others. 
Many scheduling problems are NP-hard problems. For such 
NP-hard combinatorial optimization problems, heuristics play 
a major role in searching for near-optimal solutions. If only 
mutation is used, the algorithm is very slow. Crossover makes 
the algorithm significantly faster.  
      In this GA-based heuristic, we generate a different parame-
ter set for the genetic operators. We protect the best schedule 
which has the minimum makespan, at each generation. Then 
we transfer this schedule to the next population with no 
change. This operation enables us to choose the higher crosso-
ver and mutation probability pc  = 1 (crossover probability) and  
pm =  0.05 (mutation probability). So we increase the diversity of 
the population to get a better solution. We also show the excel-
lent performance of the LOX operator. Most researchers use 
0.01 mutation probability in their heuristic. This heuristic uses 
.05 value of mutation probability and achieved good re-
sults.Using a mutation probability higher than 0.05 may re-
duce the convergence. Investigation of this would lead to a 
further study of GAs. According to the computational results, 
the GA-based heuristic success rate is 76% (in Table 2). There-
fore, this heuristic is quite effective for flow shop scheduling 
problems. Also, the GA-based heuristic can be easily extended 
to solve flow shop problems with other criteria, such as total 
flow time, maximum tardiness, total tardiness, etc.  

10 FUTURE DIRECTION 
The future research directions suggested here are intended to 
bridge the gap between the development of theory and practi-
cal applications of theory. Three areas of research are identi-
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fied: 
• Theoretical,  
• Computational, 
• Empirical research. 

10.1 Theoretical Research 
Theoretical research in flowshop scheduling should attempt to 
develop dominance conditions that are either independent of 
partial schedules that precede a job candidate or are such that 
a large number of partial schedules containing a lesser number 
of jobs are rejected quickly. The dominance conditions devel-
oped (in combinatorial and branch and bound procedures) 
depend on partial schedules that precede a job candidate. the-
oretical research should consider many more special cases of 
flowshop scheduling that have been considered before and 
develop efficient optimization techniques for their solution. 
Simultaneously, more quick, perhaps dirty but reliable heuris-
tic procedures should be developed. Consideration of hybrid 
heuristic approaches for these problems provides another 
fruitful area for future theoretical research. 

10.2 Computational Research. 
A practical scheduler has difficulty in selecting an algorithm to 
solve a given flowshop scheduling problem. The computa-
tional research should consider such aspects as comparative 
efficiency of various algorithms for a specified problem with 
given data set. Thus, new measures of computational effort 
required should be developed.  
     In addition, artificial intelligence techniques, such as neural 
networks should be further exploited to select specific heuris-
tics to be used for a given problem (see Gupta et al. [28] for 
one such effort). 

10.3 Empirical Research 
Future research in flowshop scheduling should be inspired 
more by real life problems rather than problems encountered 
in mathematical abstractions. For a realistic problem formula-
tion, empirical research is necessary to understand the practi-
cal situations. The flowshop scheduling is only one of a few 
areas where no case histories are available. Empirical research 
should answer such questions as: What is the maximum prob-
lem size encountered in practice? What specific situations give 
rise to flowshop scheduling problems? What are the desired 
objectives of scheduling? What is the nature of processing 
times? How rigid (or flexible) are the operating policies? Em-
pirical research, therefore, needs to include a survey of indus-
trial scheduling practices and situations. Without such a sur-
vey, we may in fact spend another twenty-five years in solving 
a problem that perhaps needs no solution, since it may be the 
wrong problem (from practical consideration). 
 
     We believe study remains to be done in the following areas: 
It is a good idea to use flow shop specific techniques to speed 
up the convergence of the algorithm. Algorithms can be de-
veloped to optimize population size, number of generations 
and percentages of genetic operators. New genetic operators 
can be developed to increase the evolution and convergence 
speed The recent developments in supply chain management, 

internet, and e-commerce have created new and complex 
scheduling and coordination problems that we have just be-
gun to understand. Therefore, we need to diversify our re-
search efforts in scheduling to include these new and emerg-
ing problems. 
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