
International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2447
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A Comprehensive Study of Genetic Algorithm for
the Flowshop Scheduling Problem

Neelam Tyagi1*, R.G.Varshney2 and A.B.Chandramouli3

Abstract— In this paper, we introduced the methodology, operator’s and concepts of a Genetic Algorithm. We described a Genetic
Algorithm based heuristic for solving the flowshop scheduling problems. Flow-shop scheduling problem (FSSP) deals with the scheduling
of a set of jobs that visit a set of machines in the same order. Heuristics play a major role for solving NP –hard combinatorial optimization
problems. This paper describes a Genetic Algorithm based heuristic to makespan minimization on flowshop scheduling. We compared our
heuristic with the NEH (Nawaz, Enscore, Ham) algorithm which is the most popular heuristic in the literature. The computational experience
shows that the Genetic Algorithm approach provides competitive results for flowshop scheduling problems.

Index Terms—Flowshop scheduling, Crossover operators, Genetic Algorithm , makespan, Mutation operators, NEH Algorithm.

—————————— ——————————

1 INTRODUCTION
HE flowshop scheduling has been a very active and prolif-
ic research area since the seminal paper of Johnson [49].
 The flowshop scheduling problem is a production

problem where a set of n jobs have to be processed with iden-
tical flow pattern on m machines. When the sequence of job
processing on all machines is the same we have the permuta-
tion flowshop sequencing production environment. Since
there is no job passing, the number of possible schedules for n
jobs is n!.In scheduling problems we must determine the order
or sequence for processing a set of jobs through several ma-
chines in an optimal manner. We study the flow shop prob-
lems considering the following assumptions:
(i) The operation processing times on the machines are known,
fixed and some of them may be zero if some job is not pro-
cessed on a machine.
(ii) Set-up times are included in the processing times and they
are independent of the job position in the sequence of jobs.
(iii) At a time, every job is processed on only one machine, and
every machine processes only one job.
(iv)The job operations on the machines may not be preempted.
Initial research concerning flowshop scheduling problem was
done by Johnson [49]. Johnson described an exact algorithm to
minimize makespan for the n-jobs two-machine flowshop
scheduling problem. Later, algorithms, such as branch-and
bound and beam search, that yield the exact solution for this

problem were proposed. The flow shop scheduling problem
that includes many jobs and machines is a combinatorial op-
timization problem for the NP-hard problem category.
Therefore, near optimum solution techniques are preferred.
Several heuristic approaches for the flow shop scheduling
problem are developed. In recent years, metaheuristic ap-
proaches, such as simulated annealing, tabu search, and genet-
ic algorithms, have become very desirable in solving combina-
torial optimization problems because of their computational
performance.
 The rest of paper is organized as follows: Section 2 repre-
sents an introduction to GA. Section 3 and 4 describe the
background, applications, methodology and different opera-
tors of Genetic Algorithms. In section 5 and 6 we explain the
GA based and NEH heuristics respectively. Section 7 represent
the model of GA. Computational result show in section 8 and
finally section 9 represents the conclusion and suggestion for
future direction.

1.1 Nomenclature

n number of jobs
m number of machines
pij processing time of job i on machine j
pc probability of crossover
pm probability of mutation
Cmax, C* makespan, optimal makespan value or lower
 bound value
S(t) the population in the t-th generation

2 LITERATURE REVIEW
A significant research effort has been devoted for sequencing
jobs in a flowshop with the objective of finding a sequence that
minimizes the makespan. For problems with 2 machines, or 3

T

————————————————
• 1Graphic Era University, Dehradun, Uttarakhand, India

*Corresponding Author: neelam24tyagi@gmail.com
• 2Department of mathematics, Graphic Era University, Dehradun,

Uttarakhand, India, E-mail: drrgvarshney@gmail.com
• 3Department of mathematics, Meerut College, Meerut, Uttar Pradesh,

India, E-mail: dr.abchandramouli@gmail.com

IJSER

http://www.ijser.org/
mailto:neelam24tyagi@gmail.com
mailto:dr.abchandramouli@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2448
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

machines under specific constraints on job processing times,
the efficient Johnson’s algorithm obtains an optimal solution
for the problem. The famous “Johnson’s rule” is a fast
O(nlogn) method for obtaining the optimal solution for the
F2/prmu/Cmax (two machines) and for some special cases with
three machines. Later, Palmer [11] presented a heuristic to
solve the more general m -machine PFSP. Campbell, Dudek
and Smith[21] develop another heuristic which is basically an
extension of Johnson’s algorithm to the m machine case. The
list of heuristics is almost endless. Ruiz and Maroto[44] pro-
vided a comprehensive evaluation of heuristic methods and
concluded that the famous NEH heuristic of Nawaz, Enscore
and Ham[39] provides the best performance for the
F/prmu/Cmax problem. As a matter of fact, the NEH is actively
studied today as the recent papers of Framinan, Leisten and
Rajendran [27], Dong, Huang and Chen [52], Rad, Ruiz and
Boroojerdian [47] or Kalczynski and Kamburowski [42] show.
However, since this scheduling problem is NP-hard (Garey,
Johnson, & Sethi [40]) the search for an optimal solution is of
more theoretical than practical importance. Therefore, since
the 1960s a number of heuristic methods that provide near
optimal or good solutions with limited computation effort
have been proposed for flowshop sequencing. The perfor-
mance of some earlier heuristics was evaluated by Dannen-
bring[9].

2.1 Heuristic methods can be classified according to
two major categories

Constructive methods: The constructive algorithms obtain
directly a solution for the scheduling problem, i.e. a n-job se-
quence, by using some procedure which assigns to each job a
priority or an index in order to construct the solution sequence
(see for example, Campbell, Dudek, & Smith[21], Dannen-
bring[9], Davoud Pour[20], Gupta[28], Kalczynski & Kambu-
rowski[43], Koulamas[3], Nagano & Moccellin[41], Nawaz,
Enscore, & Ham[39], Palmer[11].
Improvement method: An improvement method starts from a
given initial solution, and looks for a better one normally by
using some neighbourhood search procedure.
 Metaheuristics can also be considered as improvement

heuristics. Regarding metaheuristics, there is also a vast
literature of different proposals for the PFSP under differ-
ent criteria. Metaheuristics can also be considered as im-
provement heuristics. Within this type of techniques we
find genetic algorithms (GAs), simulated annealing (SA),
tabu search (TS) and other procedures or hybrid methods.
The first proposed metaheuristics for the permutation
flowshop scheduling problem (PFSP) are the simulated
annealing algorithms by Osman and Potts [23] and Ogbu
and Smith [16]. Grabowski and Wodecki [24] demonstrat-
ed different tabu search approaches. While Genetic Algo-
rithms are presented in Reeves [6] and in Ruiz, Maroto
and Alcaraz [46]. Other algorithms are the path-based
method of Werner [17] or the iterated local search (ILS) of
Stutzle [51].

 Recentaly Other metaheuristics like Ant Colony Optiomi-
zation, a very fast Tabu Search (TS) approach, Scatter
Search, An updated and comprehensive review of flow-

shop heuristics and metaheuristics, Discrete Differential
Evolution, Particle Swarm Optimization or Iterated
Greedy are presented in Rajendran and Ziegler[8],
Grabowski and Wodecki[24], Nowicki and Smutnicki[13],
Ruiz and Maroto[44], Onwubolu and Davendra[18],
Tasgetiren et al.[36] and Ruiz and Stützle[45], respective-
ly.

 Recent and high performing approaches include parallel
computing methodologies presented in Vallada and
Ruiz[14]. Apart from makespan minimization, the PFSP
has been studied under many other criteria. For example,
Vallada, Ruiz and Minella [15] review 40 heuristics and
metaheuristics for tardiness-related criteria. Similarly, a
recent review of multiobjective approaches is given in
Minella, Ruiz and Ciavotta [19].

3 GENETIC ALGORITHMS
Genetic algorithms were developed by Holland in [25]. The
genetic algorithm (GA) is a search technique based on the me-
chanics of natural genetics and survival of the fittest (Gold-
berg [10]). GA simulates the biological processes that allow
the consecutive generations in a population to adapt to their
environment. The adaptation process is mainly applied
through genetic inheritance from parents to children and
through survival of the fittest. The genetic algorithm object
determines which individuals should survive, which should
reproduce, and which should die. Since genetic algorithms
(GAs) are adaptive and flexible, the GAs were shown to be
successfully applied to several optimization problems. For
example, they have been applied to routing, scheduling, adap-
tive control, game playing, cognitive modeling, transportation
problem, traveling salesman problems, optimal control prob-
lems, database query optimization, etc.

The Gas are stochastic search techniques whose search al-
gorithms simulate natural phenomena (biological evolution).
Genetics is a biological term. Biologically, genes of a good par-
ent produce better offspring The basic idea of the GAs is that
the strong tend to adapt and survive while the weak tend to
die. One of the strengths of GAs is that they use past infor-
mation to direct their search with the assumption of improved
performance. The formal description of the GA which was
provided by Grefenstette is as follows:

 … A genetic algorithm is an iterative procedure maintain-
ing a population of structures that are candidate solutions to
specific domain challenges. During each temporal increment
(called a generation), the structures in the current population
are rated for their effectiveness as domain solution, and on the
basis of these evaluations, a new population of candidate solu-
tions is formed using specific genetic operators such as repro-
duction, crossover, and mutation. (Grefenstette [26])-

To successfully apply a GA to solve a problem one needs to
determine the following (Premalatha et al. [29]):

• The representation of possible solutions, or the chro-
mosomal encoding.

• The fitness function which accurately represents the
value of the solution.

• Genetic operators (selection, crossover and Mutation)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2449
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

have to employ and the parameter values (popula-
tion size, probability of applying operators, etc.), that
are suitable.

3.1 GA are different from more normal optimization and
search procedures in four ways
 GAs work with a coding of the parameter set (as men-

tioned above), not the parameters themselves.
 GAs search from a population of points, not a single

point.
 GAs does not use derivatives or other auxiliary

knowl-edge.
 GAs use probabilistic transition rules, not determinis-

tic rules.

It also records statistics and decides how long the evolution
should continue. Figure 1 illustrates the simple genetic algo-
rithm (Premalatha et al. [29]).

Fig. 1. Simple genetic algorithm (Premalatha et al., 2009)

3.2 Background of GA
Many human inventions were inspired by nature. Artificial neural
networks is one example. Another example is Genetic Algorithms
(GA). GAs search by simulating evolution, starting from an initial
set of solutions or hypotheses, and generating successive "genera-
tions" of solutions. This particular branch of AI was inspired by the
way living things evolved into more successful organisms in na-
ture.
 The main idea is survival of the fittest, a.k.a. natural selection.
A chromosome is a long, complicated thread of DNA (deoxyribo-
nucleic acid). Hereditary factors that determine particular traits of
an individual are strung along the length of these chromosomes,

like beads on a necklace. Each trait is coded by some combination
of DNA (there are four bases, A (Adenine), C (Cytosine), T (Thy-
mine) and G (Guanine). Like an alphabet in a language, meaning-
ful combinations of the bases produce specific instructions to the
cell. Changes occur during reproduction. The chromosomes from
the parents exchange randomly by a process called crossover.
 Therefore, the offspring exhibit some traits of the father and
some traits of the mother. A rarer process called mutation also
changes some traits. Sometimes an error may occur during copying
of chromosomes (mitosis). The parent cell may have -A-C-G-C-T-
but an accident may occur and changes the new cell to -A-C-T-C-T-
. Much like a typist copying a book, sometimes a few mistakes are
made. Usually this results in a nonsensical word and the cell does
not survive. But over millions of years, sometimes the accidental
mistake produces a more beautiful phrase for the book, thus pro-
ducing a better species.

3.3 Methodology
The general procedures of the GA are as follows:

1. Initialize a population of binary or non-binary chro-
mosomes.

2. Evaluate each chromosome in the population using
the fitness function.

3. Select chromosome to mate (reproduction).
4. Apply genetic operators (crossover and mutation) on

chromosome selected.
5. Put chromosomes produced in a temporary popula-

tion.
6. If the temporary population is full, then go to step 7.

Otherwise , go to step 3.
7. Replace the current population with the temporary

population.
8. If termination criterion is satisfied, then quit with the

best chromosome as the solution for the problem.
Otherwise , go to step 2

3.4 Simple Genetic Algorithm

/*Algorithm GA */

Formulate initial population
Randomly initialize population

Repeat

Evaluate objective function
Find fitness function

Apply genetic operators

Reproduction
Crossover
Mutation

Until stopping criteria

Fig. 2. The Working Principle of a Simple Genetic Algorithm

3.5 Genetic Algorithms are composed of three
operators

 1. Reproduction,

Solution

Problem
Problem Encoding
Objective Function

Evolutionary operators

Mutation

Cross Over

Selection

Fitness Assignment
 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2450
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 2. Crossover,
 3. Mutation

Reproduction is a process in which individual strings are cop-
ied according to their objective function values (biologists call
this function the fitness function). We can think of the fitness
function as some measure of profit, utility or goodness that we
want to maximize. This operator, of course, is an artificial ver-
sion of natural selection.
Crossover is the partial exchange of information using a cross-
site chosen at random. First strings in the mating pool are
mated at random then new strings are created by swapping
the selected elements of the string (Figure 3).
Mutation is the occasional (with small probability) random
alteration of the value of a string position. In the traditional
representation of GA this means changing a 1-a 0 and vice
versa. By itself, mutation is a random walk through the string
space. The mutation operator plays a secondary role on the
GA.

 Before Crossover After crossover

1 String

2 String

Fig. 3. Crossover

Application of Genetic Algorithms
The application of genetic algorithms to the flow shop scheduling
problem has been widely studied.
 Chen et al. [4] developed one of the earliest genetic algorithms

for the flow shop scheduling problem with the makespan min-
imization criterion.

 Reeves [6] also described the concept of genetic algorithms
and applied it solving the flow shop scheduling problem with
makespan as a criterion.

 Murata et al. [50] examined the performance of genetic algo-
rithms in order to specify some genetic operators and parame-
ters for the flow shop scheduling problem. They then proposed
two hybrid genetic algorithms to improve the performance of
the genetic algorithm. One is the genetic local search algorithm
and the other is a genetic simulated annealing algorithm. They
also introduced some modifications of search mechanisms in
these hybrid genetic algorithms.

 Cotta and Troya [2] studied different representations for the
flow shop scheduling problem using forma analysis. They pro-
posed some new operators that run on these representations.

 Reeves and Yamada [5] re-considered the implementation of a
genetic algorithm for the flow shop scheduling problem using
the representative neighborhood and path re-linking.

 Wang et al. [31] presented a class of order-based genetic algo-
rithms for the flow shop scheduling problem. This algorithm
borrows from the idea of ordinal optimization to ensure the
quality of the solution found with a reduced computation ef-
fort. It is applied to evolutionary search mechanisms and learn-
ing capabilities of genetic algorithms to effectively perform
exploration and exploitation.

 Wang and Zheng [31] proposed an effective hybrid heuristic
for the flow shop scheduling problem. They incorporated the
NEH heuristic into the random initialization of a genetic algo-
rithm, used multicrossover operators acting on the divided
subpopulations, and replaced mutation by the simulated an-
nealing metropolis sample process with multiple neighbor state
generators.

 Iyer and Saxena [48] improved the standard implementation of
the genetic algorithm by tailoring the various genetic algorithm
operators to suit the structure of the problem.

 Wang et al. [34] first formulated the determination of optimal
genetic control parameters. Then the ordinal optimization and
the optimal computing budget allocation techniques are applied
to determine the best genetic control parameters among all the
alternative parameter combinations.

 Ruiz et al. [46] proposed a robust genetic algorithm and a rapid
hybrid implementation for solving the permutation flow shop
scheduling problem. These algorithms use new genetic opera-
tors, advanced techniques like hybridization with local search,
an efficient population initialization, and a new generational
scheme.

 Wang and Zhang [32] presented a novel and systematic ap-
proach based on ordinal optimization and optimal computing
budget allocation techniques to determine the optimal combi-
nations of genetic operators for flow shop scheduling prob-
lems.

 Zhang et al. [35] proposed an adaptive genetic algorithm with
multiple operators for the flow shop scheduling problem. This
adaptive genetic algorithm uses multiple crossover and muta-
tion operators in an adaptively hybrid sense, according to their
contribution to the search process.

4 GENETIC ALGORITHM FOR FLOWSHOP SCHEDULING
PROBLEMS

Flowshop scheduling is one of the most well-known problems in the
area of scheduling. Various approaches to this problem have been
proposed since the pioneering work of Johnson [49]. GAs has been
applied to combinatorial optimization problems such as the traveling
salesman problem and scheduling problems (see for example, Fox &
McMahon [1], Ishibuchi, Yamamoto, Murata, & Tanaka [22]. When
applying GAs to a scheduling problem there is an obvious practical
difficulty. We need a different string representation and genetic oper-
ators. These are shown below in detail
 Representation of structure : The traditional representation of

GA which contains 0's and l's does not work for scheduling
problems. In order to apply any GA to a scheduling problem, a
structure can be described as a sequence of the jobs in the prob-
lem.

Elements of Genetic Algorithms

4.1 Population initialization and population size
The first element of the GAs is the size of population and how
to generate the initial population. The initial population of
chromosomes can be generated randomly or by using some
heuristics that are suitable for the problem considered. The
determination of the population size is a crucial element in the
GAs. Selecting a very small population size increases the risk
of prematurely converging to a local optimal. Large popula-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2451
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

tion sizes increases the probability of converging to a global
optimal, but it will take more time to converge. In most of the
GA applications, the population size was maintained at a con-
stant. Most GAs in other contexts assumes that the initial pop-
ulation is chosen completely at random. But it is a good idea to
construct the initial population drawing on other heuristics in
the literature. This enables us to arrive at the final solution
more quickly. Reeves' used the NEH Algorithm to generate
the initial population. He obtained one solution from this heu-
ristic and generated others at random. Chen et al, used the
CDS algorithm (a heuristic developed by Campbell, Dudek
and Smith) to construct the initial population. Chen et al also
stated that the initial population for their GA would be gener-
ated using other well known heuristics (for example, Dannen-
bring's method or a job insertion-based method). We use the
m-1 schedules produced by the CDS method and one schedule
produced by using the Dannenbring method to generate an
initial population. This operator selects a member at random
and swaps two randomly selected positions of the member to
generate a new member for the initial population. This proce-
dure will be repeated until the number of the members is
equal to population size. Chen et al, generated some trial ex-
amples and run their heuristics with different population sizes
for each example; They found that the population with size
more than 60 cannot guarantee better results than the popula-
tion with size equal to 60. Therefore, we decided to use 60 as a
population size of our heuristic.

4.2 Fitness function
The second element of the GAs is the fitness function, which is
very important of the GAs process of evolution. The GA with-
out fitness function is blind because the GA directs its search
using historical data which are the fitness values of the chro-
mosomes. The GA will use the fitness values of each chromo-
some to determine if the chromosome can survive and pro-
duce offspring, or die.
There are different criteria used as fitness values of a structure.
The most popular of these are makespan (maximum comple-
tion time) and total flow time. We use the makespan criterion
in our heuristic. For a maximization problem, the measure of
performance generally constitutes the fitness function. How-
ever, our objective is to minimize the makespan. For minimi-
zation problems, the method to determine the fitness function
differs from the maximization problems. Fitness function of
the strings can be calculated as follows:

 f(Si(t))= max{C(Si(t)} - C(Sit)
(1.1)
 where Si(t) is the ith string in tth generation, C(Si(t)) is the
makespan of Si(t) and f(S i(t)) is the fitness function of Si(t).
Therefore, the probability of selection for a schedule P(Si(t))
with lower makespan is high (Equation 1.2).

 P(Si(t)) = f(Si(t)) / Σf (1.2)
 This is also the criterion used for the selection of
parents for the reproduction of children.
Genetic Algorithm Operators

4.3 Reproduction (or Selection) of chromosomes
The selection of chromosomes to reproduce is the third ele-
ment of the GA. Reproduction (or selection) is an operator that
makes more copies of better strings in a new population. Re-
production is usually the first operator applied on a popula-
tion. Reproduction selects good strings in a population and
forms a mating pool. This is one of the reasons for the repro-
duction operation to be sometimes known as the selection op-
erator. Thus, in reproduction operation the process of natural
selection causes those individuals that encode successful struc-
tures to produce copies more frequently. To sustain the gener-
ation of a new population, the reproduction of the individuals
in the current population is necessary. For better individuals,
these should be from the fittest individuals of the previous
population. This is very important element in the GA because
it plays an important role in the convergence of the GA. If the
selection process is always biased to only accept the best
chromosome, the algorithm will quickly have a population of
almost the same chromosome which will cause the GA to con-
verge to a local optimum. Several selection methods have been
employed by several researchers to select among the best per-
formers. Some of these methods are: the proportional selection
scheme; the roulette wheel selection; deterministic selection;
ranking selection; tournament selection, etc.

• Roulette wheel selection
Roulette wheel selection is chosen, where the average fitness
of each chromosome is calculated depending on the total fit-
ness of the whole population. The chromosomes are randomly
selected proportional to their average fitness.
Roulette wheel selection is summarized in the following steps,
 Step1. Let the pop-size, number of strings in pop.
 Step2. nsum, sum of all of the fitness values of the strings

in pop; form nsum slots and assign string to the slots ac-
cording to the fitness value of the string.

 Step3. Do step 4 (pop-size -1) times.
 Step4. Generate a random number between 1 and nsum,

and use it to index into the slots to find
 Step5. Add the string with the highest fitness value in pop

to newpop. the corresponding string; add this string to
newpop

• Tournament selection [10].

In Tournament Selection, predetermined numbers of chromo-
somes are randomly selected from the population and the
chromosome with the best fitness value is considered to be
regenerated. Here selection is based on a competition within a
subset of the population.

4.4 Crossover
Crossover is used as the main genetic operator and the per-
formance of a GA is heavily dependent on it. It’s a fourth
element of GA. A crossover operator is used to recombine two
strings to get a better string.It is important to note that no new
strings are formed in the reproduction phase. In the crossover
operator, new strings are created by exchanging information
among strings of the mating pool. A crossover operator is
mainly responsible for the search of new strings even though
mutation operator is also used for this purpose sparingly.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2452
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Assume that in the initial population there are two parents
which are:

 Parent 1: 6-7-5-4-2-3-1-8 and
 Parent 2: 8-4-3-1-7-5-2-6

A single- position crossover method is performed on the two
parents, where the single- position crossover is denoted by
“|” as shown below.

 Parent 1: 6-7-5-4-2-|3-1-8 and
 Parent 2: 8-4-3-1-7-|5-2-6

 Child 1: 6-7-5-4-2-5-2-6 and
 Child 2: 8-4-3-1-7-3-1-8

It is obvious that both of children represent infeasible se-
quences because both of them have five jobs out of eight jobs,
and each has three duplicated jobs. Therefore to solve this in-
feasibility problem, several crossover methods that produced
feasible chromosomes were proposed by several researchers:

1. Order crossover (OX) by Davis [30].
2. Partially Mapped Crossover (PMX) by Goldberg and

Lingle.
3. Sub-sequence-Swap crossover (SSX) and Sub-

sequence-Chunk crossover (SCX) by Grefenstette et
al. [26].

4. Cycle Crossover (CX) by Oliver, Smith, and Holland.
5. Edge Recombination Crossover (ERX) by Whitley,

Starkweather, and Shaner [12].
6. Linear Order Crossover (LOX) by Falkenauer and

Bouffouix.
7. Order-based Crossover (OBX) and Position-based

Crossover (PBX) by Syswerda.
8. Enhanced edge recombination Crossover (EERX) by

Starkweather et al.
9. Similar Job Order Crossover (SJOX) by Ruben Ruiz et

al. [44].
Some of these crossover operators are briefly explained in the
following:

4.4.1. Linear order crossover (LOX)

LOX, initially suggested by Falkenauer and Bouffouix, works
as follows:
Step 1: Select a subsequence of operations from one parent at
random.
Step 2: Produce a proto-offspring by copying the subsection
sequence into the corresponding positions of it.
Step 3: Delete the operations which are already in the subse-
quence from the second parent.The resulted sequence of oper-
ations contains the operations that the proto-offspring needs
Step 4: Place the operations into the unfixed positions of the
proto-offspring from left to right according to the order of the
sequence to produce an offspring. This procedure is illustrated
in figure 4.

 Crossover LOX tries to preserve as much as possible both
the relative positions between genes and the absolute posi-
tions relative to the extremities of parents

 Fig. 4. LOX Crossover operator.

4.4.2. Position Based Crossover (PBX)
Step 1: Select a set of positions from one string at random,
Step 2: Produce a new string by copying the symbols on these
positions into the corresponding positions in the new string,
Step 3: Delete the symbols already selected from the second
string. The resulting sequence contains only the symbols that
the new string needs,
Step 4: Place the symbols into unfixed positions in the new
string from left to right according to the order of the sequence
used to produce one offspring. First, it is generated a ran-
dom mask and then exchanged relative genes between
parents according to the mask.

4.4.3 Order crossover (OX).
The offspring inherits the elements between the two crossover
points from the selected parent in the same order and position
as they appear in the parent. The remaining elements are in-
herited from the alternate parent in the order in which they
appear in that parent, beginning with the first position follow-
ing the second crossover point and skipping over all elements
already present in the off spring.

4.4.4. Partially Mapped Crossover (PMX)
A parent and two crossover sites are selected randomly and
the elements between two string positions in one of the par-
ents are directly inherited by the offspring. Each element be-
tween the two crossovers points in the alternate parent are
mapped to the position held by this element in the first parent.
Then the remaining elements are inherited from the alternate
parent.
Step 1: Two points are randomly selected for dividing the par-
ents. The section of the parents between these two points is
called the mapping section (figure 5).
Step 2: Exchanges the mapping section of the parent to the

Parent 1

4 5 1 6 7 2 3

2 5 1 6 7 4 3

4 7 1 6 5 2 3

Child 1

Parent 2

Child 2

2 7 1 6 5 4 3

Parent 1

2 5 1 6 7 4 3

Parent 2

4 7 1 6 5 2 3

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2453
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

offspring. i.e. mapping section of the first parent is copied into
the second offspring and so on.

 3 1 4 6 5 5

 3 1 4 6 5 5

Fig. 5. Partially mapped crossover

Step 3: Define one-to-one mapping between genes of map-
ping section of the two parents. For the above example map-
ping is as follows (figure 6).

Fig. 6. One-to-one mapping.

4.4.5 Cycle Crossover (CX)
The cycle between strings is fined, the symbols in the cycle are
coped to a new string, the remaining symbols are determined
for the new string by deleting the symbols and the remaining
symbols are fulfilled with the new string.

4.4.6 Order-based Crossover (OBX)
A set of positions is selected randomly; the order of symbols in
the selected positions is imposed on the corresponding sym-
bols in the other string. Mutation operator plays a very im-
portant role in GAs and it helps maintain diversity in the
population to prevent premature convergence.
 Six mutation operators are examined in the GA to
minimize the makespan in HFS. These are neighborhood
based, adjacent two job change, arbitrary two job change,
arbitrary three job change, shift change and inversion muta-
tion operator.

4.4.7 Similar job order crossover (SJOX)
SJOX crossover is based on the idea of identifying and main-
taining building blocks in the offspring (Ruben Ruiz et al.
[44]). In this way similar blocks or occurrences of jobs in both
parents are passed over to child unaltered. If there are no simi-

lar blocks in the parents the crossover operator will behave
like the single-point order crossover.

4.5 Mutation
Mutation is nearly always regarded as an integral part of a
GA. Mutation generates an offspring solution by randomly
modifying the parent’s feature. It helps to preserve a reasona-
ble level of population diversity, and provides a mechanism to
escape from local optima. For each child obtained from cross-
over, the mutation operator is applied independently with a
probability pm.
 Mutation adds new information in a random way to the
genetic search process and ultimately helps to avoid getting
trapped at local optima. It is an operator that introduces diver-
sity in the population whenever the population tends to be-
come homogeneous due to repeated use of reproduction and
crossover operators. Mutation may cause the chromosomes of
individuals to be different from those of their parent individu-
als. Mutation in a way is the process of randomly disturbing
genetic information. They operate at the bit level; when the
bits are being copied from the current string to the new string,
there is probability that each bit may become mutated. This
probability is usually a quite small value, called as mutation
probability pm.
 A coin toss mechanism is employed; if random number
between zero and one is less than the mutation probability,
then the bit is inverted, so that zero becomes one and one be-
comes zero. This helps in introducing a bit of diversity to the
population by scattering the occasional points. This random
scattering would result in a better optima, or even modify a
part of genetic code that will be beneficial in later operations.
On the other hand, it might produce a weak individual that
will never be selected for further operations.
 The need for mutation is to create a point in the neighbor-
hood of the current point, thereby achieving a local search
around the current solution.
 The mutation is also used to maintain diversity in the popu-
lation. For example, the following population having four
eight bit strings may be considered:

0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
0 0 0 1 0 1 1 0
0 1 1 1 1 1 0 0

It can be noticed that all four strings have a 0 in the left most
bit position. If the true optimum solution requires 1 in that
position, then neither reproduction nor crossover operator
described above will be able to create 1 in that position. The
inclusion of mutation introduces probability pm of turning 0
into 1.
 In traditional GAs, mutation is applied by flipping each
element of the structure from 1 to 0 (or vice versa) with a small
probability. In sequence representation mutation needs to be
defined differently. Mutation operator plays a very important
role in GAs and it helps maintain diversity in the popula-
tion to prevent premature convergence. Some mutation
operators are examined in the GA to minimize the

Child 1

3 2 1 6 5 4 7

Parent 1

1 2 3 4 5 6 7

Parent 2

4 7 1 6 5 2 3

6 7 3 4 5 2 1 Child 1

Parent 1

1 2 3 4 5 6 7

Parent 2

4 7 1 6 5 2 3

3 1 4 5 5 5 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2454
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

makespan in Flowshop Scheduling. These are neighborhood
based, adjacent two job change, arbitrary two job change,
arbitrary three job change, shift change and inversion muta-
tion operator etc.

4.5.1 Exchange mutation
Exchange mutation was a simple exchange of two elements of
the structure, chosen at random.

• Before mutation : 4 6 2 8 5 1 3 7
• After mutation : 4 3 2 8 5 1 6 7

4.5.2 Inversion Mutation
It can be seen from Fig. 7 that the inversion mutation selects
two positions at random and then swaps the genes on these
positions.

 Fig. 7. The Inversion mutation operators

4.5.3 Shift mutation
Sift mutation was a shift of one element (chosen randomly) a
random number of places to the right or left.

Before mutation: 4 6 2 8 5 1 3 7
After mutation : 4 3 6 2 8 5 1 7

Some experiments shows that shift mutation seemed to be better than
exchange mutation (see Holland').

4.6 Generations (iteration)
Now that there is no practicable rule to set suitable stopping
condition and it is also impossible for GA to evolve with too
long time in real application, the usual way is to set a limit to a
number of generations. These three operators are simple and
straightforward. The reproduction operator selects good
strings and the crossover operator recombines good sub-
strings from good strings together, hopefully, to create a better
sub-string. The mutation operator alters a string locally ex-
pecting a better string. Even though none of these claims are
guaranteed and/or tested while creating a string, it is ex-
pected that if bad strings are created they will be eliminated
by the reproduction operator in the next generation and if
good strings are created, they will be increasingly emphasized.
Further insight into these operators, different ways of imple-
mentations and some mathematical foundations of genetic
algorithms can be obtained from GA literature. Application of
these operators on the current population creates a new popu-
lation. This new population is used to generate subsequent
populations and so on, yielding solutions that are closer to the
optimum solution. The values of the objective function of the
individuals of the new population are again determined by
decoding the strings. These values express the fitness of the
solutions of the new generations. This completes one cycle of
genetic algorithm called a generation. In each generation if the

solution is improved, it is stored as the best solution. This is
repeated till convergence.
We use the number of generations (iteration) as the termina-
tion criterion. If the number of generations is low the probabil-
ity of finding the best result is low. Otherwise if the number of
generations is too high, the iteration time is too long. Figure 8
shows the experiments for improvement of the makespan ac-
cording to the generations. We conducted some experiments
by solving different sizes of problem at 35 generations and we
found out that the makespan become stable after 20 genera-
tions. An empirical number of generations is 35. If the size of
problems is larger than 30 x 30 and processing time interval is
larger than 1-20, the number of generations may be increased.
Therefore, we chose 20 as the termination criterion in our heu-
ristic.

5 GENETIC ALGORITHM BASED HEURISTIC
Now, we are describes GA-based heuristic for the flowshop
problems.
Step 1: Determine the initial population S(0) as described in an
earlier section. The size of the population is 60. t = 0, NG=0
Step 2: Calculate the fitness value, f(Si(t)), of each string for
population. (See Equation (1.1))
Step 3: Calculate the selection probability, P(Si(t)),of each
string for population.(See Equation 1.2)
Step 4: Select a pair of strings (parents) according to selection
probabilities of the members of S(t) (using random numbers).
Step 5: Constitute the new strings (children) by applying the
LOX operator to the parents.
Step 6: Apply the shift mutation to the children with probabil-
ity 0.05 (Pm = 0.05).
Step 7: Put the new strings in S(t+l). If the size of population
S(t + 1) = 60 then NG = NG + 1 and go to Step 8, else go to
Step 4.
Step 8: If NG = 20 then stop, else go to Step 2.

6 NEH HEURISTIC
The NEH heuristic was proposed by Nawaz et al [39] to solve
the m-machine flow shop problem of minimizing makespan.
The heuristic is based on the assumption that a job with more
processing time on all machines will be given higher priority
while a job with less processing time on all machines will re-
ceive lower priority. Accordingly, the two jobs with highest
processing times are determined from the n-jobs problem. The
best partial sequence for these two jobs is found by consider-
ing the two possible partial schedules. The relative positions of
these two jobs with respect to each other are fixed in the re-
maining steps of the heuristic. Next, the job with the third
highest processing time is determined and three partial se-
quences are tested in which this job is placed at the beginning,
middle, and end of the partial sequence found before. The best
partial sequence fixes the relative positions of these three jobs
in the remaining steps of the heuristic. This procedure is re-
peated until all jobs are fixed and scheduled.

1 2 3 4 5 6

1 5 3 4 2 6

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2455
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

7 A MODEL REPRESENTATION OF GENETIC ALGORITHMS
A set of genetic operators such as reproduction (selection) and
recombination (crossover and mutation) is applied to create
new and better solutions (off springs) from the individuals of
the current population and the solutions are steadily im-
proved from generation to generation. The structure of GAs is
given in Fig. 8.

8 COMPUTATIONAL RESULTS
In order to examine the effectiveness of the GA-based heuris-
tic, one comparison was made over a wide range of jobs and
machines. We compared our heuristic with the NEH (Nawaz,
Enscore, Ham) Algorithm which is the most popular heuristic
in the literature. NEH is a 20-year-old heuristic but most re-
searchers still compare their heuristic with NEH or they in-

clude NEH in their algorithms. Armentano et al, showed the
improvement percentage of tabu search with diversification
and intensification compared to NEH algorithm. Koulamas [3]
proposed a new heuristic called HFC (Heuristic Flowshop
scheduling with Cmax objective) and compared HFC with NEH
algorithm. Ronconi26 also compared his MM (MinMax) algo-
rithm with NEH. Framinan et al, showed the excellent perfor-
mance of the NEH in their algorithm.

 They proposed a heuristic for mean/total flowtime minimi-
zation in permutation flow shops. The heuristic exploits the
idea of 'optimizing' partial schedules, already present in the
NEH heuristic with respect to makespan minimization.

 TABLE 1: RELATIVE PERFORMANCE OF GA
(CGA/CNEH)

Encoding

Solution

1 1 0 0 1 0 1 0 1 0
1 0 1 1 1 0 1 1 1 0
0 0 1 1 0 1 1 0 0 0
1 1 0 0 1 1 0 0 0 1

Initial Population

Evalution
Offspring

1 1 0 0 1 0 1 0 1 0
1 0 1 1 1 0 1 1 1 0
0 0 1 1 0 1 1 0 0 0
1 1 0 0 1 1 0 0 0 1

 Decoding

 Fitness Computation

Solution

Mutation

Strings
Crossover

1 1 0 0 1 0 1 0 1 0

1 1 0 0 1 0 1 0 1 0

1 1 0 0 1 0 1 1 1 0

1 0 1 1 1 0 1 0 1 0

1 1 0 0 1 0 1 0 1 0

1 1 0 0 1 0 1 1 1 0

Selection

Roulette
Wheel

Fig. 8. The fundamental cycle and operations of basic GAs (Gen and Cheng [37])

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2456
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The processing times were randomly sampled from a uniform
distribution ranging from 1-20. Using this range enables us to
compare our genetic algorithm with the Chen et a119h heuris-
tic that uses the same range of processing times. Both heuris-
tics were programmed in PASCAL and run on a Pentium IV
(256 MB RAM) computer. In all, 230 problems were generated
for 23 different combinations of job size and number of ma-
chines. It was not possible to solve problems larger than 40 x
40 because of software and machine limitations. This is caused
by the build up computer memory requirements from the siz-
able GA population and the operations being carried out on it.
The result of the two comparisons are presented in the follow-
ing tables. In Table 1 the relative performance of the GA-based
heuristic to the NEH was computed by CGA/CNEH where
the C refers to the average makespan of the problems in the
combination. Problems, used for calculation are the same as in
Table 2 (200 runs were performed).

TABLE 2: COMPARISON OF GA WITH THE NEH

In Table 2, the first column is the pairing of the number of
jobs, n, and the number of machines, m. The second column is
the number of generated problems for the pairing. The third
column and fifth column illustrate the number of times the
best solution was obtained by the heuristic used, respectively.
The fourth column shows the number of times that two heu-
ristics in a comparison give the same makespan. The last two
columns show the percentage of success of each heuristic, the

total number of times that the heuristic gives the best solution
(number of advantage + number of even) divided by the
number of generated problems. (The method of Widmer and
Hertz.) According to the results in Table 1 the GA-based heu-
ristic obviously yields better average makespan than the NEH.
 Table 2 shows that in the 230 generated examples, the NEH
gets better results than the GA-based heuristic only 56 times
out of 230, while the GA-based heuristic is better 139 times out
of 230. The NEH and the GA-based heuristic give the same
results 35 times out of 230.

9 CONCLUSION AND DIRECTIONS FOR FUTURRE SEARCH
In this paper, we introduced the fundamental modal and de-
scribed a GA-based heuristic for solving the flow shop sched-
uling problems. The algorithm is easily implementable and
performs quite effectively. Genetic Algorithms are easy to ap-
ply to a wide range of problems, from optimization problems
like the traveling salesperson problem, to inductive concept
learning, scheduling, and layout problems. The results can be
very good on some problems, and rather poor on others.
Many scheduling problems are NP-hard problems. For such
NP-hard combinatorial optimization problems, heuristics play
a major role in searching for near-optimal solutions. If only
mutation is used, the algorithm is very slow. Crossover makes
the algorithm significantly faster.
 In this GA-based heuristic, we generate a different parame-
ter set for the genetic operators. We protect the best schedule
which has the minimum makespan, at each generation. Then
we transfer this schedule to the next population with no
change. This operation enables us to choose the higher crosso-
ver and mutation probability pc = 1 (crossover probability) and
pm = 0.05 (mutation probability). So we increase the diversity of
the population to get a better solution. We also show the excel-
lent performance of the LOX operator. Most researchers use
0.01 mutation probability in their heuristic. This heuristic uses
.05 value of mutation probability and achieved good re-
sults.Using a mutation probability higher than 0.05 may re-
duce the convergence. Investigation of this would lead to a
further study of GAs. According to the computational results,
the GA-based heuristic success rate is 76% (in Table 2). There-
fore, this heuristic is quite effective for flow shop scheduling
problems. Also, the GA-based heuristic can be easily extended
to solve flow shop problems with other criteria, such as total
flow time, maximum tardiness, total tardiness, etc.

10 FUTURE DIRECTION
The future research directions suggested here are intended to
bridge the gap between the development of theory and practi-
cal applications of theory. Three areas of research are identi-

m
n
8
10
15
20
30

5
0.981
0.991
0.988
1.001
1.007

10
0.988
0.983
0.972
0.995
0.998

15
0.984
0.991
0.996
0.994
1.001

20
0.989
0.989
0.987
0.999
1.005

n x m

Generat-
ed

problems

Ad-
vantage

GA

Ev
en

Ad-
vantage

NEH

%
GA

%
NEH

8*5
8*10
8*15
8*20
10*5

10*10
10*15
10*20
15*5

15*10
15*15
15*20
20*5

20*10
20*15
20*20
30*5

30*10
30*15
30*20
30*30
35*35
40*40

Total

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

230

8
4
8
8
4
7
6
7
9
7
5
7
3
6
6
5
1
5
4
2
8
9
10

139

2
6
2
1
4
2
2
3
0
3
1
0
2
1
1
0
3
0
0
2
0
0
0

35

0
0
0
1
2
1
2
0
1
0
4
3
5
3
3
5
6
5
6
6
2
1
0

56

100
100
100
90
80
90
80

100
90

100
60
70
50
70
70
50
40
50
40
40
80
90

100

76

20
60
20
20
60
30
40
30
10
30
50
30
70
40
40
50
90
50
60
80
20
10
0

40

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2457
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

fied:
• Theoretical,
• Computational,
• Empirical research.

10.1 Theoretical Research
Theoretical research in flowshop scheduling should attempt to
develop dominance conditions that are either independent of
partial schedules that precede a job candidate or are such that
a large number of partial schedules containing a lesser number
of jobs are rejected quickly. The dominance conditions devel-
oped (in combinatorial and branch and bound procedures)
depend on partial schedules that precede a job candidate. the-
oretical research should consider many more special cases of
flowshop scheduling that have been considered before and
develop efficient optimization techniques for their solution.
Simultaneously, more quick, perhaps dirty but reliable heuris-
tic procedures should be developed. Consideration of hybrid
heuristic approaches for these problems provides another
fruitful area for future theoretical research.

10.2 Computational Research.
A practical scheduler has difficulty in selecting an algorithm to
solve a given flowshop scheduling problem. The computa-
tional research should consider such aspects as comparative
efficiency of various algorithms for a specified problem with
given data set. Thus, new measures of computational effort
required should be developed.
 In addition, artificial intelligence techniques, such as neural
networks should be further exploited to select specific heuris-
tics to be used for a given problem (see Gupta et al. [28] for
one such effort).

10.3 Empirical Research
Future research in flowshop scheduling should be inspired
more by real life problems rather than problems encountered
in mathematical abstractions. For a realistic problem formula-
tion, empirical research is necessary to understand the practi-
cal situations. The flowshop scheduling is only one of a few
areas where no case histories are available. Empirical research
should answer such questions as: What is the maximum prob-
lem size encountered in practice? What specific situations give
rise to flowshop scheduling problems? What are the desired
objectives of scheduling? What is the nature of processing
times? How rigid (or flexible) are the operating policies? Em-
pirical research, therefore, needs to include a survey of indus-
trial scheduling practices and situations. Without such a sur-
vey, we may in fact spend another twenty-five years in solving
a problem that perhaps needs no solution, since it may be the
wrong problem (from practical consideration).

 We believe study remains to be done in the following areas:
It is a good idea to use flow shop specific techniques to speed
up the convergence of the algorithm. Algorithms can be de-
veloped to optimize population size, number of generations
and percentages of genetic operators. New genetic operators
can be developed to increase the evolution and convergence
speed The recent developments in supply chain management,

internet, and e-commerce have created new and complex
scheduling and coordination problems that we have just be-
gun to understand. Therefore, we need to diversify our re-
search efforts in scheduling to include these new and emerg-
ing problems.

References

[1] B. R. Fox & M. B. McMahon, “Genetic operations for sequencing problems,

foundations of genetic algorithms”, In G. J. E. Rawlins (Ed.), San Mateo:
Morgan Kaufmann Publishers, pp. 284–300, 1991.

[2] C. Cotta,J. M. Troya, “ Genetic forma recombination in permutation flow-
shop problems”; Evol. Comput., vol. 6, no.1, pp. 25–44, 1998.

[3] C. Koulamas, “A new constructive heuristic for the flowshop scheduling
problem”, Eur J Opl Res, vol. 105, pp. 66-71, 1998.

[4] C. L.Chen, V.S. Vempati and N. Aljaber N, “An application of genetic
algorithms for flow shop problems,” Eur J Opl Res, vol. 80, pp. 389-396,
1995.

[5] C. R. Reeves and T. Yamada, “Genetic algorithms, path relinking, and the
flowshop sequencing problem”, Evolutionary Computation, vol. 6, no. 1, pp.
45–60, 1998.

[6] C. R. Reeves, "A Genetic Algorithm for Flowshop Sequencing", Computers
& Operations Research, vol. 22, no. 1, pp. 5-13, 1995.

[7] C. R. Reeves, “Improving the efficiency of tabu search for machine schedul-
ing problems”, 1993.

[8] C. Rajendran and H. Ziegler, "Ant-colony algorithms for permutation
flowshop scheduling to minimize makespan/total flowtime of jobs", Euro-
pean Journal of Operational Research, vol. 155, no. 2, pp. 426-438, 2004.

[9] D. Dannenbring, “An evaluation of flow shop sequencing heuristics”, Mngt
Sci, vol. 23, pp. 1174-1182, 1977.

[10] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine
Learning”, (Addison Wesley: Reading, MA), 1989.

[11] D. S. Palmer, "Sequencing jobs through a multi-stage process in the mini-
mum total time: A quick method of obtaining a near optimum", Operational
Research Quarterly, vol. 16, no. 1, pp. 101-107, 1965.

[12] D. Whitley, T. Starkwether and D. Shaner, “The travelling salesman and
sequence scheduling problems: quality solutions using genetice dge recom-
bination”, In: Davis L (ed). Hand book of Genetic Algorithms. Van Nostrand
Reinhold, New York, USA, pp 350-372, 1991.

[13] E. Nowicki and C. Smutnicki, "A fast tabu search algorithm for the permu-
tation flow-shop problem", European Journal of Operational Research, vol.
91, no. 1, pp. 160-175, 1996.

[14] E.Vallada and R. Ruiz, "Cooperative metaheuristics for the permutation
flowshop scheduling problem", European Journal of Operational Research,
vol. 193, no. 2, pp. :365-376, 2009.

[15] E. Vallada, R. Ruiz and G. Minella, "Minimising total tardiness in the m-
machine flowshop problem: A review and evaluation of heuristics and me-
taheuristics", Computers & Operations Research, vol. 35, no. 4, pp. 1350-
1373, 2008.

[16] F. A. Ogbu and D. K. Smith, “The application of the simulated annealing
algorithms to the solution of the n/m/Cmax flowshop problem”, Computers
& Operations Research, vol. 17, no. 3, pp. 243–253, 1990.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2458
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[17] F. Werner, “On the heuristic solution of the permutation flowshop problem
by path algorithms”, Journal of the Operational Research Society, vol. 44,
no. 4, pp. 375–382, 1993. Computers & Operations Research, vol. 20, no. 7,
pp. 707–722.

[18] G. C. Onwubolu and D. Davendra, "Scheduling flow shops using differen-
tial evolution algorithm", European Journal of Operational Research, pp.
171, no. 2, pp. 674-692, 2006.

[19] G. Minella, R. Ruiz and M. Ciavotta, "A review and evaluation of multi-
objective algorithms for the flowshop scheduling problem", INFORMS
Journal on Computing, vol. 20, no. 3, pp. 451-471, 2008.

[20] H. Davoud Pour, “ A new heuristic for the n-job, m-machine flow-shop
problem”, Production Planning and Control, vol.12, no.7, pp. 648–653,
2001.

[21] H. G. Campbell, R. A. Dudek and M. L. Smith, “Heuristic algorithm for N-
job, M-machine sequencing problem”, Management Science Series B-
Application, vol. 16, no. 10, pp. B630-B637, 1970.

[22] H. Ishibuchi, N. Yamamoto, T. Murata and H. Tanaka, “Genetic algorithms
and neighborhood search algorithms for fuzzy flowshop scheduling prob-
lems”, Fuzzy Sets and Systems, vol. 67, pp. 81–100, 1994.

[23] I. H. Osman and C. N. Potts, "Simulated Annealing for Permutation Flow-
shop Scheduling", Omega-International Journal of Management Science,
vol. 17, no. 6, pp. 551-557, 1989.

[24] J. Grabowski and M. Wodecki, "A very fast tabu search algorithm for the
permutation flow shop problem with makespan criterion", Computers &
Operations Research, vol. 31, no. 1, pp. 1891-1909, 2004.

[25] J. H. Holland, “Adaptation in Natural and Artificial Systems”, University of
Michigan Press, Ann Arbor, USA, 1975.

[26] J. J. Grefenstette, R. Gopal B. Rosmaita and D. Van Gucht, “ Genetic algo-
rithms for the travelling salesman problem”, In: Grenfenstette JJ (ed). Pro-
ceeding of the First International Conference on Genetic Algorithms and
Their Applications. Carnegie-Mellon University, Pittsburgh, P A, USA, pp
160-168, 1985.

[27] J. M. Framinan and R. Leisten, "An efficient constructive heuristic for flow-
time minimization in permutation flow shops, Omega, vol. 31, pp. 311-317,
2003.

[28] J. N. D. Gupta, “A functional heuristic algorithm for the flow-shop schedul-
ing problem”, Opl Res Q, vol. 22, pp. 39-47, 1971.

[29] K. Premalatha and A. M. Natarajan, “Hybrid PSO and GA for global maxi-
mization”, International Journal of Open Problems in Computer Science
and Mathematics, Vol. 2, No. 4. pp. 597-608, 2009.

[30] L. Davis, “Job shop scheduling with genetic algorithms”, In: Grenfenstette
JJ (ed). Proceedings of the First International Conference on Genetic Algo-
rithms. Carnegie-MellonU niversity, Pittsburgh, PA, USA, pp 136-140,
1985.

[31] L. Wang and D. Z. Zheng, “An effective hybrid heuristic for flow shop
scheduling”, The Inter. J. Advanc. Manufact. Tech, vol. 21, pp. 38–44,
2003a.

[32] L. Wang, L. Zhang, “Determining optimal combination of genetic operators
for flow shop scheduling”, Int. J. Adv. Manuf. Technol, vol. 30, pp. 302–
308, 2006.

[33] L. Wang, L. Zhang, D. Z. Zheng, “A class of order-based genetic algorithm
for flow shop scheduling”, Int. J. Adv. Manuf. Technol, vol. 22, pp. 828–
835, 2003.

[34] L. Wang, L. Zhang, D. Z. Zheng, “The ordinal optimisation of genetic con-
trol parameters for flow shop scheduling”, Int. J. Adv. Manuf. Technol, vol.
23, pp. 812–819, 2004.

[35] L. Zhang, L. Wang, D. Z. Zheng, “An adaptive genetic algorithm with mul-
tiple operators for flowshop scheduling”, Int. J. Adv. Manuf. Technol, vol.
27, pp. 580–587, 2006.

[36] M. F. Tasgetiren, Y. C. Liang, M. Sevkli and G. Gencyilmaz, "A particle
swarm optimization algorithm for makespan and total flowtime minimiza-
tion in the permutation flowshop sequencing problem", European Journal of
Operational Research, vol. 177, no. 3, pp. 1930-1947, 2007.

[37] M. Gen and R. Cheng, “Genetic algorithms and engineering optimization”,
John Wiley, New York, 2000.

[38] M. Ibrahim, Alharkan, “Algotithms for Sequencing and Scheduling”, Indus-
trial Engineering King Saud University Riyadh, Saudi Arabia.

[39] M. Nawaz, Jr. E. E. Enscore and I. Ham, "A heuristic algorithm for the m
machine, n job flowshop sequencing problem", Omega-International Jour-
nal of Management Science, vol. 11, no. 1, pp. 91-95, 1983

[40] M. R. Garey, D. S. Johnson and R. Sethi, "The complexity of flowshop and
jobshop scheduling", Mathematics of Operations Research, vol. 1, no. 2, pp.
117-129, 1976.

[41] M. S. Nagano and J. V. Moccellin, “A high quality solution constructive
heuristic for flow shop sequencing”, Journal of the Operational Research
Society, vol. 53, pp. 1374–1379, 2002.

[42] P. J. Kalczynski and J. Kamburowski, "An empirical analysis of the opti-
mality rate of flow shop heuristics", In press at European Journal of Opera-
tional Research, 2009.

[43] P. J. Kalczynski and J. Kamburowski, “On the NEH heuristic for minimiz-
ing the makespan in permutation flow shops”, OMEGA, The International
Journal of Management Science, vol. 35, no.1, pp. 53–60, 2007.

[44] R. Ruiz and C. Maroto, "A comprehensive review and evaluation of permu-
tation flowshop heuristics", European Journal of Operational Research, vol.
165, no. 2, pp. 479-494, 2005.

[45] R. Ruiz and T. Stützle, "A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem", European Journal of Oper-
ational Research, vol. 177, no. 3, pp. 2033-2049, 2007.

[46] R. Ruiz, C. Maroto and J. Alcaraz, "Two new robust genetic algorithms for
the flowshop scheduling problem", Omega-International Journal of Man-
agement Science, vol. 34, no. 5, pp. 461-476, 2006.

[47] S. F. Rad, R. Ruiz, R. and N. Boroojerdian, "New high performing heuris-
tics for minimizing makespan in permutation flowshops", Omega-
International Journal of Management Science, vol. 37, no. 2, pp. 331-345,
2009.

[48] S. K. Iyer, B. Saxena, “Improved genetic algorithm for the permutation
flowshop scheduling problem”, Comput. Oper. Res, vol. 31, no. 4, pp. 593–
606, 2004.

[49] S. M. Johnson, “Optimal two- and three-stage production schedules with
setup times included”, Naval Research logistics Quarterly, vol. 1, pp. 61–
68, 1954.

[50] T. Murata,H. Ishibuchi and H. Tanaka, “Algorithms for flowshop schedul-
ing problems”, Comput. Indust. Eng, vol. 30, pp. 1061–1701, 1996.

[51] T. Stuttzle, “Applying iterated local search to the permutation flow shop
problem”, Technical report, AIDA-98-04, TU Darmstadt, FG Intellektik,
1998.

[52] X. Y. Dong, H. K. Huang and P. Chen, "An improved NEH-based heuristic
for the permutation flowshop problem", Computers & Operations Research,
vol. 35, no.12, pp. 3962-3968, 2008.

IJSER

http://www.ijser.org/

	1 Introduction
	1.1 Nomenclature

	2 Literature review
	2.1 Heuristic methods can be classified according to two major categories

	3 Genetic Algorithms
	3.1 GA are different from more normal optimization and search procedures in four ways
	3.2 Background of GA
	3.3 Methodology
	3.4 Simple Genetic Algorithm
	3.5 Genetic Algorithms are composed of three operators

	4 Genetic Algorithm for Flowshop Scheduling Problems
	4.1 Population initialization and population size
	4.2 Fitness function
	4.3 Reproduction (or Selection) of chromosomes
	4.4 Crossover
	4.4.1. Linear order crossover (LOX)
	4.4.2. Position Based Crossover (PBX)
	4.4.3 Order crossover (OX).
	4.4.4. Partially Mapped Crossover (PMX)
	4.4.5 Cycle Crossover (CX)
	4.4.6 Order-based Crossover (OBX)
	4.4.7 Similar job order crossover (SJOX)

	4.5 Mutation
	4.5.1 Exchange mutation
	4.5.2 Inversion Mutation
	4.5.3 Shift mutation

	4.6 Generations (iteration)

	5 Genetic Algorithm based heuristic
	6 NEH Heuristic
	7 A Model Representation of Genetic Algorithms
	8 Computational results
	Decoding
	9 Conclusion and directions for futurre search
	10 Future Direction
	10.1 Theoretical Research
	10.2 Computational Research.
	10.3 Empirical Research

